Bayesian inference with Generative Adversarial Network (GAN) Priors

USC University of Southern California

Dhruv Patel and Assad A Oberai

Bayesian Inference

Anatomy of an inverse problem

Forward problem

- Well-posed
 - solution exists
 - solution is unique

 - stable w.r.t. perturbation
- Causal
- Local

Inverse problem

- Ill-posed
 - not meeting wellposedness requirement
- sparse observations
- Non-causal
- Global

How to tackle ill-posedness?

1.Classical (regularization) approach:

Formulate as an optimization problem.

$$\min_{x} \frac{1}{2} \| f(x) - \widehat{y} \|_{w}^{2} + \| x - x_{ref} \|_{R}^{2}$$

2.Bayesian approach:

Statistical framework to characterize distribution of parameters given some noisy version of measurement.

Posterior distribution

$$p_X^{post}(\mathbf{x}|\widehat{\mathbf{y}}) = \frac{1}{\mathbb{Z}} p^{like}(\widehat{\mathbf{y}}|\mathbf{x}) p_X^{prior}(\mathbf{x})$$

$$\propto p_{\eta}(\widehat{\mathbf{y}} - f(\mathbf{x})) p_X^{prior}(\mathbf{x})$$

Challenge I: Priors

- Finding a quantitative description of informative and feasible priors.
- Typical priors

$$p^{prior}(\mathbf{x}) = exp\left(-\frac{1}{\sigma^2}||\mathbf{x}||^2\right)$$

However, what if the prior knowledge may be something like...

Challenge II: Sampling

- Typical physics-driven inverse problem contain large no. of parameters (10^4-10^7) .
- MCMC approximation of posterior requires many samples from posterior, where each sample involves the solution of PDE.
- An efficient sampler is difficult to design for high-dimensional parameter space.

Central Idea

- Use deep generative model (GAN)s as priors in Bayesian inference by learning the parameter distribution directly from data.
- Demonstrate GANs as a tool to reduce the dimensionality of parameter space for *efficient posterior sampling*.
- Use the quantified uncertainty information for <u>optimal design of</u> experiments leading to efficient parameter inference.

Generative Adversarial Networks

GAN, the two-player min-max game

\triangleright Weights of g and d are obtained by solving min-max problem:

$$\phi^*, \theta^* = \arg\min_{\boldsymbol{\theta}} \arg\max_{\boldsymbol{\theta}} \left[\underset{\boldsymbol{x} \sim p_x^{data}}{\mathbb{E}} [\log \boldsymbol{d}_{\boldsymbol{\theta}}(\boldsymbol{x})] + \underset{\boldsymbol{z} \sim p_z}{\mathbb{E}} [1 - \log \boldsymbol{d}_{\boldsymbol{\theta}}(\boldsymbol{g}_{\boldsymbol{\phi}}(\boldsymbol{z}))] \right]$$

For a network with infinite capacity and adequate training time:

$$\underset{\boldsymbol{x} \sim p_X^{data}}{\mathbb{E}}[m(\boldsymbol{x})] = \underset{\boldsymbol{x} \sim p_X^{gen}}{\mathbb{E}}[m(\boldsymbol{x})] = \underset{\boldsymbol{z} \sim p_Z}{\mathbb{E}}[m(\boldsymbol{g}(\boldsymbol{z}))]$$

• <u>Image inpainting + denoising:</u>

Optimal experimental design / Active learning

Random sampling

Variance driven adaptive sampling $n_w = 0$ $n_w = 1$ $n_{w} = 3$ $n_{w} = 2$ $n_w = 4$

• <u>Initial condition inversion</u>

GAN as Priors

$$\mathbb{E}_{\boldsymbol{x} \sim p_{\boldsymbol{x}}^{post}}[m(\boldsymbol{x})] = \frac{1}{\mathbb{Z}} \mathbb{E}_{\boldsymbol{x} \sim p_{\boldsymbol{x}}^{prior}}[m(\boldsymbol{x})p_{\eta}(\widehat{\boldsymbol{y}} - \boldsymbol{f}(\boldsymbol{x}))]$$

$$= \frac{1}{\mathbb{Z}} \mathbb{E}_{\boldsymbol{x} \sim p_{\boldsymbol{x}}^{data}}[m(\boldsymbol{x})p_{\eta}(\widehat{\boldsymbol{y}} - \boldsymbol{f}(\boldsymbol{x}))]$$

$$= \frac{1}{\mathbb{Z}} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}}[m(\boldsymbol{g}(\boldsymbol{z}))p_{\eta}(\widehat{\boldsymbol{y}} - \boldsymbol{f}(\boldsymbol{g}(\boldsymbol{z})))]$$

$$= \frac{1}{\mathbb{Z}} \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}^{post}}[m(\boldsymbol{g}(\boldsymbol{z}))]$$

where,

$$p_{\mathbf{z}}^{post} = p_{\eta} \left(\widehat{\mathbf{y}} - f(\mathbf{g}(\mathbf{z})) \right) p_{z}(\mathbf{z})$$

Experimental Results

• Image denoising:

Reference

Dhruv Patel, Assad Oberai, Bayesian Inference with Generative **Adversarial Network Priors** arxiv:1907.09987[stat.ML].